JIS C8708:2019充放電試験回路での「-ΔV」検出の様子
試運転中のJIS C8708:2019充放電試験回路
その「-ΔV」検出の様子をご覧ください。
※テストですんで新品の電池ではなく、
「ダイソーReVOLTES」JIS C8708:2019充放電試験 50サイクル目
で、ソフトのバグでデータ取得をミスった時に使ったダイソーの
ReVOLTES単3。
すでに200回の充放電試験を経ています。
新JISでの充電条件が(サイクル1~49)
「0.5Cで-ΔV又は132分のタイマー制御」
「-ΔVは5~10mV」
と記されています。
このテストでは-ΔV値をとりあえず「10mV」に設定。
1分サイクルでシリアル出力する経過時間と電圧値
を観察してみます。
(7サイクル目の途中まで)
~~~~~~~~~~~~~~~~~~~~~
#C 0.5C 1cyc 1/5 1h39m 1.670V
#C 0.5C 1cyc 1/5 1h40m 1.670V
#C 0.5C 1cyc 1/5 1h41m 1.670V ★Peak #1
#C 0.5C 1cyc 1/5 1h42m 1.668V
#C 0.5C 1cyc 1/5 1h43m 1.668V
#C 0.5C 1cyc 1/5 1h44m 1.667V
#C 0.5C 1cyc 1/5 1h45m 1.666V
#C 0.5C 1cyc 1/5 1h46m 1.665V
#C 0.5C 1cyc 1/5 1h47m 1.663V
#C 0.5C 1cyc 1/5 1h48m 1.662V
#C 0.5C 1cyc 1/5 1h49m 1.661V
#C 0.5C 1cyc 1/5 1h49m 1.660V ★Stop
#C-Wait 1cyc 1/5 0h01m 1.520V
:
#D 0.5C 1cyc 1/5 1h07m 1.000V ←放電時間
~~~~~~~~~~~~~~~~~~~~~
#C 0.5C 2cyc 1/5 1h09m 1.689V
#C 0.5C 2cyc 1/5 1h10m 1.689V
#C 0.5C 2cyc 1/5 1h11m 1.689V ★Peak #2
#C 0.5C 2cyc 1/5 1h12m 1.688V
#C 0.5C 2cyc 1/5 1h13m 1.687V
#C 0.5C 2cyc 1/5 1h14m 1.685V
#C 0.5C 2cyc 1/5 1h15m 1.684V
#C 0.5C 2cyc 1/5 1h16m 1.682V
#C 0.5C 2cyc 1/5 1h17m 1.680V
#C 0.5C 2cyc 1/5 1h17m 1.679V ★Stop
#C-Wait 2cyc 1/5 0h01m 1.529V
:
#D 0.5C 2cyc 1/5 1h05m 1.000V ←放電時間
~~~~~~~~~~~~~~~~~~~~~
#C 0.5C 3cyc 1/5 1h06m 1.698V
#C 0.5C 3cyc 1/5 1h07m 1.698V
#C 0.5C 3cyc 1/5 1h08m 1.698V ★Peak #3
#C 0.5C 3cyc 1/5 1h09m 1.696V
#C 0.5C 3cyc 1/5 1h10m 1.695V
#C 0.5C 3cyc 1/5 1h11m 1.694V
#C 0.5C 3cyc 1/5 1h12m 1.691V
#C 0.5C 3cyc 1/5 1h13m 1.690V
#C 0.5C 3cyc 1/5 1h13m 1.688V ★Stop
#C-Wait 3cyc 1/5 0h01m 1.533V
:
#D 0.5C 3cyc 1/5 1h03m 1.000V ←放電時間
~~~~~~~~~~~~~~~~~~~~~
#C 0.5C 4cyc 1/5 1h03m 1.704V
#C 0.5C 4cyc 1/5 1h04m 1.705V
#C 0.5C 4cyc 1/5 1h05m 1.705V ★Peak #4
#C 0.5C 4cyc 1/5 1h06m 1.704V
#C 0.5C 4cyc 1/5 1h07m 1.702V
#C 0.5C 4cyc 1/5 1h08m 1.701V
#C 0.5C 4cyc 1/5 1h09m 1.700V
#C 0.5C 4cyc 1/5 1h10m 1.698V
#C 0.5C 4cyc 1/5 1h10m 1.695V ★Stop
#C-Wait 4cyc 1/5 0h01m 1.535V
:
#D 0.5C 4cyc 1/5 1h01m 1.000V ←放電時間
~~~~~~~~~~~~~~~~~~~~~
#C 0.5C 5cyc 1/5 1h02m 1.710V
#C 0.5C 5cyc 1/5 1h03m 1.710V
#C 0.5C 5cyc 1/5 1h04m 1.710V ★Peak #5
#C 0.5C 5cyc 1/5 1h05m 1.709V
#C 0.5C 5cyc 1/5 1h06m 1.707V
#C 0.5C 5cyc 1/5 1h07m 1.706V
#C 0.5C 5cyc 1/5 1h08m 1.704V
#C 0.5C 5cyc 1/5 1h09m 1.701V
#C 0.5C 5cyc 1/5 1h09m 1.700V ★Stop
#C-Wait 5cyc 1/5 0h01m 1.538V
:
#D 0.5C 5cyc 1/5 1h00m 1.000V ←放電時間
~~~~~~~~~~~~~~~~~~~~~
#C 0.5C 6cyc 1/5 0h59m 1.713V
#C 0.5C 6cyc 1/5 1h00m 1.715V
#C 0.5C 6cyc 1/5 1h01m 1.716V ★Peak #6
#C 0.5C 6cyc 1/5 1h02m 1.715V
#C 0.5C 6cyc 1/5 1h03m 1.715V
#C 0.5C 6cyc 1/5 1h04m 1.713V
#C 0.5C 6cyc 1/5 1h05m 1.711V
#C 0.5C 6cyc 1/5 1h06m 1.710V
#C 0.5C 6cyc 1/5 1h07m 1.707V
#C 0.5C 6cyc 1/5 1h07m 1.706V ★Stop
#C-Wait 6cyc 1/5 0h01m 1.540V
:
#D 0.5C 6cyc 1/5 0h59m 1.000V ←放電時間
~~~~~~~~~~~~~~~~~~~~~
#C 0.5C 7cyc 1/5 0h57m 1.716V
#C 0.5C 7cyc 1/5 0h58m 1.718V
#C 0.5C 7cyc 1/5 0h59m 1.720V
#C 0.5C 7cyc 1/5 1h00m 1.720V ★Peak #7
#C 0.5C 7cyc 1/5 1h01m 1.718V
#C 0.5C 7cyc 1/5 1h02m 1.717V
#C 0.5C 7cyc 1/5 1h03m 1.716V
#C 0.5C 7cyc 1/5 1h04m 1.715V
#C 0.5C 7cyc 1/5 1h05m 1.712V
#C 0.5C 7cyc 1/5 1h05m 1.710V ★Stop
#C-Wait 7cyc 1/5 0h01m 1.541V
:
~~~~~~~~~~~~~~~~~~~~~
0.5Cでの充電をはじめておよそ1時間してピーク電圧を
検出。
その数分後に10mVのドロップを検知して充電停止。
こんな充電制御が続いています。
2時間12分(132分)のタイマーで止まったのは、この7つ
のサイクルの中ではありませんでした。
※200サイクルの試験を経た古い電池だから
充電の次の工程、時間待ち後0.5Cで1.0Vまでの放電。
充電時間と放電時間を抜き出してみると・・・
充電時間 放電時間 充放電時間比
1cyc 1h49m 1h07m 67/109 = 61.5%
2cyc 1h17m 1h05m 65/77 = 84.4%
3cyc 1h13m 1h03m 63/73 = 86.3%
4cyc 1h10m 1h01m 61/70 = 87.1%
5cyc 1h09m 1h00m 60/69 = 87.0%
6cyc 1h07m 0h59m 59/67 = 88.1%
1サイクル目は0.2Cで1.0Vまでゆっくりと放電したんで、
充電時間が長くなったようです。
その後は84%~88%の時間比で放電が行われています。
そしてチャートで記録している電池側面の温度変化を
見ると温度上昇は5℃ほど。
-ΔV制御無しで132分充電した場合に比べると、
優しい温度上昇になっています。
※以前の実験の温度変化 15℃ほど上昇。
a1_20200210151501.jpg
もう少し様子を見てから(初めて動かすプログラムなんで)
新品電池をセットして試験をしてみます。
※追記
「-ΔV検出」による充電停止と、「132分充電」で電池の
側面温度がどうなるかしらべてみました。
#1~#7が「-ΔV充電」の時。 (↑の記録を採った時の)
およそ5℃くらいの温度上昇。
@1~@3が「132分充電」。
電圧波形を見ると、-ΔVが現れているのにまだ充電が行わ
れている様子がわかります。
それに連れて温度も上昇。 10℃くらい上がっています。
※ナダ電子のプリンターシールドでの記録
「132分充電」後の放電結果を見てみると・・・
(チャートの@1~@3のところ)
放電時間 充放電時間比
@1 1h09m 69分/132分 = 52.3%
@2 1h07m 67分/132分 = 50.8%
@3 1h07m 67分/132分 = 50.8%
1.0Vまでの放電時間は-ΔV制御で充電したのと
(↑の#1~#6)ほとんど同じでした。
つまり、-ΔV発生以降の充電エネルギーは無駄に
なっていて、電池を暖めているだけということが
見えてきます。
このあたりもニッ水電池の寿命に関係してくるかと
推測できます。
市販の急速充電器での充電と自作放電器 での充放電繰り返し実験
では見えてこない部分が、今回の「-ΔV検出制御」で見えてきた
ような気がします。
| 固定リンク
「電池」カテゴリの記事
- リード線出しが下方になった電池ホルダー(2023.06.06)
- タミヤ★★ミニ四駆用充電池「NEO CHAMP」950mAh 3200サイクル目(2023.06.05)
- FDKの長寿命電池「HR-AAULT」(1000mAh) 1200cyc目(2023.06.02)
- 放置していた2014年製の「eneloop lite」を充放電 2400cyc目(2023.04.08)
- 懐中電灯・液漏れだぁ。(2023.04.05)
「電子工作」カテゴリの記事
- 予告:「マイコン型導通チェッカー」「電池電圧チェッカー」値上げします(2022.11.16)
- 三和の針式テスター「GP-5」不調(2022.10.18)
- 「ダイソー ミニケース 5個組」が見つからない #2(2022.10.12)
- 「ダイソー ミニケース 5個組」が見つからない(2022.09.29)
- オペアンプの出力につなぐ大容量コンデンサ ほんとにいいの?(2022.02.26)
「Arduino」カテゴリの記事
- 初めて買ったArduino UNO・・・今は(2023.05.25)
- 液晶表示コントローラ HD44780で迎撃(2023.05.16)
- Arduino UNOで3相モーターを回す(2023.05.01)
- Arduino サーミスタを使った温度測定で 【ゼロ除算問題】(2023.03.23)
- A/Dコンバータでサーミスタの抵抗値を読む サーミスタをつなぐ場所は?(2023.03.21)
コメント